中文|English

Current issue
2024-5-25
Vol 32, issue 5

ISSUE

2020 年2 期 第28 卷

COVID-19 专题研究 HTML下载 PDF下载

粤西地区及各地级市新型冠状病毒肺炎疫情发展趋势预测分析—基于 Holt 双参数指数平滑模型的研究

Prediction of epidemic tread of COVID-19 in Western Guangdong and otherprefecture-level cities:a study based on Holt two-parameter exponential smoothing model

作者:林挺葵1 ,吴家园 1 ,刘华锋 2 ,潘振宇 3 ,李筱 4 ,赖维光 5 ,赖天文 5 ,吕军 6

单位:
1.524001 广东省湛江市,广东医科大学附属医院临床研究中心 / 科研部;2.524001 广东省湛江市,广东医科大学附属医院肾病内科;3.710003 陕西省西安市,西安市儿童医院药剂科;4.810000 青海省西宁市,青海卫生职业技术学院临床医学系;5.524001 广东省湛江市,广东医科大学附属医院呼吸与危重医学科;6.510630 广东省广州市,暨南大学附属第一医院临床研究部;通信作者:吕军,E-mail:lyujun2019@163.com; 赖天文,E-mail:laitianwen2011@163.com
Units:
1.Clinical Research Center(Scientific Research Department),the Affiliated Hospital of Guangdong Medical University,Zhanjiang 524001,China;2. Department of Nephrology,the Affiliated Hospital of Guangdong Medical University,Zhanjiang 524001,China;3.Department of Pharmacy,Xi'an Children's Hospital,Xi'an 710003,China;4.Department of Clinical Medicine,Qinghai Institute of Health Sciences,Xining 810000,China;5.Department of Respiratory and Critical Medicine,the Affiliated Hospital of Guangdong Medical University,Zhanjiang524001,China;6.Clinical Research Department,the First Affiliated Hospital of Ji'nan University,Guangzhou 510630,China;Corresponding author:LYU Jun,E-mail:lyujun2019@163.com;LAI Tianwen,E-mail:laitianwen2011@163.com
关键词:
肺炎,病毒性;新型冠状病毒肺炎;SIR 模型;基本再生数;Holt 双参数指数平滑模型
Keywords:
Pneumonia,viral;Coronavirus disease 2019;SIR model;Basic reproduction number;Holt two-parameter exponential smoothing model
CLC:
R 563.19 R 181.8
DOI:
DOI:10.3969/j.issn.1008-5971.2020.02.004
Funds:
广东省医学科研基金项目(A2018162);广东省自然科学基金项目(2015A030313827)

摘要:

背景 我国新型冠状病毒肺炎(COVID-19)疫情防控仍处于关键时期,而判断疫情未来流行趋势是制定下一阶段防控措施的关键所在。目的 通过计算粤西地区及各地级市 COVID-19 的基本再生数(R0)而预测粤西地区疫情发展趋势。方法 依据广东省卫生健康委员会截止 2020 年 2 月 18 日 24 时的官方数据构建传染病动力学 SIR模型,计算现阶段粤西地区及各地级市 COVID-19 的 R0,并采用 Holt 双参数指数平滑模型预测其发展趋势。结果疫情初期粤西地区及各地级市 COVID-19 的 R0 最大,随后呈下降趋势;根据拟合结果发现,Holt 双参数指数平滑模型对粤西地区及各地级市 COVID-19 R0 的预测值与观察值的相关性较强,可见该模型预测较准确;Holt 双参数指数平滑模型预测粤西地区及各地级市 COVID-19 疫情可能在 2 月底迎来“拐点”并走向消亡。结论 Holt 双参数指数平滑模型对粤西地区及各地级市 COVID-19 R0 的预测较准确,并预测在现有高效防控措施下,粤西地区及各地级市COVID-19 疫情正在好转,有望在 2 月底出现“拐点”。

Abstract:

Background China is still in a critical period for preventing and controlling the epidemic of coronavirusdisease 2019(COVID-19),thus determining the future epidemic trend of COVID-19 is the key to make the prevention andcontrol measures for the next stage. Objective To forecast the future epidemic trend of COVID-19 in Western Guangdongthrough estimating the basic reproduction number(R0)of COVID-19 in Western Guangdong and other prefecture-level cities.Methods Susceptible-Infected-Recovered(SIR)model was constructed to calculate R0 of COVID-19 in Western Guangdongand other prefecture-level cities according to the official data from Guangdong Health Commission up to February 18,2020,and Holt two-parameter exponential smoothing model was used to predict the epidemic trend of COVID-19 in the future. Results The largest R0 of COVID-19 was observed at the initial stage of the epidemic in Western Guangdong and other prefecture-levelcities,and then showed a continuously declining trend;the correlation between the observed value and the predicted value ofR0 in predicting the epidemic trend of COVID-19 was significantly strong in Western Guangdong and other prefecture-level citiesaccording to the fitting results,which verified that Holt two-parameter exponential smoothing model was relatively accurate;Holt two-parameter exponential smoothing model forecasted that,“inflection point” of the epidemic of COVID-19 may occurat the end of February and begin to disappear in Western Guangdong and other prefecture-level cities. Conclusion Holt two-parameter exponential smoothing model is relatively accurate in predicting the R0 of COVID-19 in Western Guangdong and otherprefecture-level cities,the epidemic of COVID-19 has been improved and is expected to reach an “inflection point” at the end ofFebruary based on the current effective prevention and control measures in Western Guangdong and other prefecture-level cities.

ReferenceList: